Characterization of triple χ^3 sequence spaces via Orlicz functions

N. Subramanian and A. Esi

ABSTRACT. In this paper we study of the characterization and general properties of triple gai sequence via Orlicz space of χ_M^3 of χ^3 establishing some inclusion relations.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w^3 for the set of all complex sequences (x_{mnk}) , where $m, n, k \in \mathbb{N}$, the set of positive integers. Then, w^3 is a linear space under the coordinate wise addition and scalar multiplication.

We can represent triple sequences by matrix. In case of double sequences we write in the form of a square. In the case of a triple sequence it will be in the form of a box in three dimensional case.

Some initial work on double series is found in *Apostol* [1] and double sequence spaces is found in *Hardy* [5], *Subramanian et al.* [10-12], and many others. Later on investigated by some initial work on triple sequence spaces is found in *Sahiner et al.* [9], *Esi et al.* [2-4], *Subramanian et al.* [13-19] and many others.

Let (x_{mnk}) be a triple sequence of real or complex numbers. Then the series $\sum_{m,n,k=1}^{\infty} x_{mnk}$ is called a triple series. The triple series $\sum_{m,n,k=1}^{\infty} x_{mnk}$ is said to be convergent if and only if the triple sequence (S_{mnk}) is convergent, where

$$S_{mnk} = \sum_{i,j,q=1}^{m,n,k} x_{ijq}(m,n,k=1,2,3,\dots).$$

A sequence $x = (x_{mnk})$ is said to be triple analytic if

$$\sup_{m,n,k} |x_{mnk}|^{\frac{1}{m+n+k}} < \infty.$$

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary: 40A05; Secondary: 40C05,40D05. Key words and phrases. Gai sequence, analytic sequence, triple sequence,dual space, Orlicz space.

The vector space of all triple analytic sequences are usually denoted by Λ^3 . A sequence $x = (x_{mnk})$ is called triple entire sequence if

$$|x_{mnk}|^{\frac{1}{m+n+k}} \to 0 \text{ as } m, n, k \to \infty.$$

The vector space of all triple entire sequences are usually denoted by Γ^3 . The space Λ^3 and Γ^2 is a metric space with the metric

(1)
$$d(x,y) = \sup_{m,n,k} \left\{ |x_{mnk} - y_{mnk}|^{\frac{1}{m+n+k}} : m,n,k:1,2,3,\dots \right\},\,$$

for all $x = \{x_{mnk}\}$ and $y = \{y_{mnk}\} in \Gamma^3$.

Let $\phi = \{\text{finite sequences}\}.$

Consider a double sequence $x = (x_{mnk})$. The $(m, n, k)^{th}$ section $x^{[m,n,k]}$ of the sequence is defined by $x^{[m,n,k]} = \sum_{i,j,q=0}^{m,n,k} x_{ijq} \delta_{ijq}$ for all $m, n, k \in \mathbb{N}$,

$$\delta_{mnk} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \end{bmatrix}$$

with 1 in the $(m, n, k)^{th}$ position and zero other wise.

A sequence $x = (x_{mnk})$ is said to be triple gai sequence if

$$((m+n+k)! |x_{mnk}|)^{\frac{1}{m+n+k}} \to 0 \text{ as } m, n, k \to \infty.$$

The triple gai sequences will be denoted by χ^3 .

Consider a triple sequence $x=(x_{mnk})$. The $(m,n,k)^{th}$ section $x^{[m,n,k]}$ of the sequence is defined by $x^{[m,n,k]} = \sum_{i,j,q=0}^{m,n,k} x_{ijq} \Im_{ijq}$ for all $m,n,k \in \mathbb{N}$; where \Im_{ijq} denotes the triple sequence whose only non zero term is a $\frac{1}{(i+j+k)!}$ in the $(i,j,k)^{th}$ place for each $i,j,k \in \mathbb{N}$.

An FK-space(or a metric space) X is said to have AK property if (\Im_{mnk}) is a Schauder basis for X, or equivalently $x^{[m,n,k]} \to x$.

An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings are continuous.

$$\delta_{mnk} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \cdots & 1 & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \end{bmatrix}$$

with 1 in the $(m, n, k)^{th}$ position and zero other wise.

A sequence $x=(x_{mnk})$ is said to be triple gai sequence if $((m+n+k)!\,|x_{mnk}|)^{\frac{1}{m+n+k}}\to 0$ as $m,n,k\to\infty$. The triple gai sequences will be denoted by χ^3 .

Consider a triple sequence $x = (x_{mnk})$. The $(m, n, k)^{th}$ section $x^{[m,n,k]}$ of the sequence is defined by $x^{[m,n,k]} = \sum_{i,j,q=0}^{m,n,k} x_{ijq} \Im_{ijq}$ for all $m,n,k \in \mathbb{N}$; where \Im_{ijq} denotes the triple sequence whose only non zero term is a $\frac{1}{(i+i+k)!}$ in the $(i, j, k)^{th}$ place for each $i, j, k \in \mathbb{N}$.

An FK-space(or a metric space) X is said to have AK property if (\Im_{mnk}) is a Schauder basis for X, or equivalently $x^{[m,n,k]} \to x$.

An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings are continuous.

If X is a sequence space, we give the following definitions:

- (i) X' is continuous dual of X;
- (ii) $X^{\alpha} = \left\{ a = (a_{mnk}) : \sum_{m,n,k=1}^{\infty} |a_{mnk} x_{mnk}| < \infty, \text{ for each } x \in X \right\};$
- (iii) $X^{\beta} = \{a = (a_{mnk}) : \sum_{m,n,k=1}^{\infty} a_{mnk} x_{mnk} \text{ is convergent, for each } \}$ $x \in X$:
- (iv) $X^{\gamma} = \left\{ a = (a_{mn}) : \sup_{m,n \ge 1} \left| \sum_{m,n,k=1}^{M,N,K} a_{mnk} x_{mnk} \right| < \infty, \text{ for each } \right\}$ $x \in X$ };
- (v) Let X be an FK-space $\supset \phi$; then $X^f = \{f(\Im_{mnk}) : f \in X'\}$;
- (vi) $X^{\delta} = \{a = (a_{mnk}) : \sup_{m,n,k} |a_{mnk}x_{mnk}|^{1/m+n+k} < \infty, \text{ for each } \}$

 $X^{\alpha}, X^{\beta}, X^{\gamma}$ are called α - (or Köthe-Toeplitz) dual of X, β -(or generalized-Köthe-Toeplitz) dual of X, γ -dual of X, δ -dual of X respectively. X^{α} is defined by Gupta and Kamptan [10]. It is clear that $X^{\alpha} \subset X^{\beta}$ and $X^{\alpha} \subset X^{\beta}$ X^{γ} , but $X^{\alpha} \subset X^{\gamma}$ does not hold.

2. Definitions and Preliminaries

A sequence $x = (x_{mnk})$ is said to be triple analytic if $\sup_{mnk} |x_{mnk}|^{\frac{1}{m+n+k}} <$ ∞ . The vector space of all triple analytic sequences is usually denoted by Λ^3 . A sequence $x = (x_{mnk})$ is called triple entire sequence if $|x_{mnk}|^{\frac{1}{m+n+k}} \to 0$ as $m, n, k \to \infty$. The vector space of triple entire sequences is usually denoted by Γ^3 . A sequence $x = (x_{mnk})$ is called triple gai sequence if $((m+n+k)!|x_{mnk}|)^{\frac{1}{m+n+k}} \to 0$ as $m, n, k \to \infty$. The vector space of triple gai sequences is usually denoted by χ^3 . The space χ^3 is a metric space with the metric

(2)
$$d(x,y) = \sup_{m,n,k} \left\{ ((m+n+k)! |x_{mnk} - y_{mnk}|)^{\frac{1}{m+n+k}}, m, n, k : 1, 2, 3, \dots \right\}$$

for all $x = \{x_{mnk}\}$ and $y = \{y_{mnk}\}$ in χ^3 . Let w^3 denote the set of all complex double sequences $x = (x_{mnk})_{m,n,k=1}^{\infty}$ and $M:[0,\infty)\to[0,\infty)$ be an Orlicz function. Given a triple sequence, $x \in w^3$. Define the sets

$$\chi_M^3 = \left\{ x \in w^3 : \left(M \left(\frac{((m+n+k)! |x_{mnk}|)^{\frac{1}{m+n+k}}}{\rho} \right) \right) \to 0,$$
as $m, n, k \to \infty$ for some $\rho > 0 \right\}$

and

$$\Lambda_M^3 = \left\{ x \in w^3 : \sup_{m,n,k \ge 1} \left(M \left(\frac{|x_{mnk}|^{\frac{1}{m+n+k}}}{\rho} \right) \right) < \infty \text{ for some } \rho > 0 \right\}.$$

The space Λ_M^3 is a metric space with the metric

$$d\left(x,y\right) = \inf \left\{ \rho > 0 : \sup_{m,n,k \ge 1} \left(M\left(\frac{\left|x_{mnk} - y_{mnk}\right|}{\rho}\right) \right)^{\frac{1}{m+n+k}} \le 1 \right\}$$

The space χ_M^3 is a metric space with the metric

$$\widetilde{d}(x,y) = \inf \left\{ \rho > 0 : \sup_{m,n,k \ge 1} \left(M\left(\frac{(m+n+k)!|x_{mnk} - y_{mnk}|}{\rho}\right) \right)^{\frac{1}{m+n+k}} \le 1 \right\}.$$

This paper is a study of the characterization and general properties of gai sequences via triple Orlicz space of χ_M^3 of χ^3 establishing some inclusion relations.

3. Main Results

Proposition 3.1. If M is a Orlicz function, then χ_M^3 is a linear set over the set of complex numbers \mathbb{C} .

Proof. It is trivial. Therefore, the proof is omitted.

Proposition 3.2. $(\chi_M^3)^{\delta} \neq \Lambda_M^3$

Proof. Let $y \in \delta$ — dual of χ_M^3 . Then $\left(M\left(\frac{|x_{mnk}y_{mnk}|}{\rho}\right)\right) \leq M^{m+n+k}$ for some constant M>0 and for each $x \in \chi_M^3$. Therefore, $\left(M\left(\frac{|y_{mnk}|}{\rho}\right)\right) \leq M^{m+n+k}$ for each m,n,k by taking $x=(\Im_{mnk})$. This implies that $y \in \Lambda_M^3$. Thus,

$$(3) \qquad (\chi_M^3)^\delta \subset \Lambda_M^3.$$

We now choose M = id and define the triple sequences (y_{mnk}) and (x_{mnk}) by $(y_{mnk}) = 1$ for all m, n and k, and by

$$(m+2)!x_{m11} = 2^{(m+2)^2}$$
 and $(m+n+k)!x_{mnk} = 0(n, k \ge 2)$ for all $m = 1, 2, ...$

Obviously, $y \in \Lambda_M^3$ and since $(m+n+k)!x_{mnk} = 0$ for all $m, n, k \geq 0$, $(m+n+k)!(x_{mnk})$ converges to zero. Hence, $x \in \chi_M^3$. But

$$((m+2)! |a_{m11}x_{m11}|)^{\frac{1}{m+n+k}} = 2^{m+2} \to \infty \text{ as } m \to \infty,$$

П

hence

$$(4) x \notin \left(\chi_M^3\right)^{\delta}.$$

From (3) and (4), we are granted $(\chi_M^3)^{\delta} \neq \Lambda_M^3$. This completes the proof.

Proposition 3.3. The dual space of χ_M^3 is Λ_M^3 . In other words $(\chi_M^3)^* = \Lambda_M^3$.

Proof. We recall that

$$\mathfrak{F}_{mnk} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \cdots & \frac{1}{(m+n+k)!} & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \end{pmatrix}$$

with $\frac{1}{(m+n+k)!}$ in the (m,n,k)th position and zero's else where, with

$$x = \Im_{mnk}$$

$$\left\{ M \left(\frac{((m+n+k)! | x_{mnk}|)^{\frac{1}{m+n+k}}}{\rho} \right) \right\} = \\
\left(M(0^{1/3}/\rho) : M(0^{1/1+n+k}/\rho) \\
\vdots & \ddots & \vdots \\
M(0^{1/m+4}/\rho) M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) M(0^{1/m+n+k+2}/\rho) \\
M(0^{1/m+4}/\rho) & \cdots & M(0^{1/m+n+k+4}/\rho) \right) = \\
\left(M(0^{1/m+4}/\rho) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \ddots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M((\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) & 0 \\
\vdots & \cdots & \vdots \\
0 M(\frac{1}{(m+n+k)!})^{\frac{1}{m+n+k}}/\rho) &$$

which is a triple gai sequence. Hence, $\Im_{mnk} \in \chi_M^3$, $f(x) = \sum_{m,n,k=1}^{\infty} x_{mnk} y_{mnk}$ with $x \in \chi_M^3$ and $f \in (\chi_M^3)^*$, where $(\chi_M^3)^*$ is the dual space of χ_M^3 .

Take $x = (x_{mnk}) = \Im_{mnk} \in \chi_M^3$. Then,

$$|y_{mnk}| \le ||f|| d(\Im_{mnk}, 0) < \infty \quad \forall m, n, k.$$

Thus, (y_{mnk}) is a bounded sequence and hence an triple analytic sequence. In other words, $y \in \Lambda_M^3$. Therefore $(\chi_M^3)^* = \Lambda_M^3$. This completes the proof.

Proposition 3.4. $(\Lambda_M^3)^{\beta} \stackrel{\subset}{\neq} \chi_M^3$

Proof. Step 1: Let $(x_{mnk}) \in (\Lambda_M^3)^{\beta}$,

(6)
$$\sum_{m,n,k=1}^{\infty} |x_{mnk}y_{mnk}| < \infty \forall (y_{mnk}) \in \Lambda_M^3.$$

Let us assume that $(x_{mnk}) \notin \chi_M^3$. Then, there exists a strictly increasing sequence of positive integers $(m_p + n_p + k_p)$ such that

$$\left(M\left(\frac{(m_p + n_p + k_p)! \left|x_{(m_p + n_p + k_p)}\right|}{\rho}\right)\right) > \frac{1}{2^{(m_p + n_p + k_p)}}, \quad (p = 1, 2, 3, \dots).$$

Let

$$(m_p + n_p + k_p)! y_{(m_p + n_p + k_p)} = 2^{(m_p + n_p + k_p)}$$
 for $(p = 1, 2, 3, ...)$,
 $y_{mnk} = 0$ otherwise.

Then $(y_{mnk}) \in \Lambda_M^3$. However,

$$\sum_{m,n,k=1}^{\infty} \left(M\left(\frac{|x_{mnk}y_{mnk}|}{\rho}\right) \right) =$$

$$= \sum_{p=1}^{\infty} \left(M\left(\frac{(m_p + n_p + k_p)! \left| x_{(m_p n_p k_p)} y_{(m_p n_p k_p)} \right|}{\rho} \right) \right) >$$

$$> 1 + 1 \dots$$

We know that the infinite series $1+1+1+\ldots$ diverges. Now we choose $M=\mathrm{id}$, where id is the identity and hence $\sum_{m,n,k=1}^{\infty} \left(M\left(\left| x_{mnk}y_{mnk} \right| / \rho \right) \right)$ diverges. This contradicts (6). Hence $(x_{mnk}) \in \chi_M^3$. Therefore,

$$\left(\Lambda_M^3\right)^\beta \subset \chi_M^3.$$

If we now choose $M=\mathrm{id}$, where id is the identity and $y_{1nk}=x_{1nk}=1$ and $y_{mnk}=x_{mnk}=0\ (m>1)$ for all n,k, then obviously $x\in\chi_M^3$ and $y\in\Lambda_M^3$, but $\sum_{m,n,k=1}^\infty x_{mnk}y_{mnk}=\infty$. Hence,

$$(9) y \notin \left(\Lambda_M^3\right)^{\beta}.$$

From (8) and (9), we are granted $(\Lambda_M^3)^{\beta} \neq \chi_M^3$. This completes the proof.

Definition 3.5. Let $p = (p_{mnk})$ be a triple sequence of positive real numbers. Then

(10)
$$\chi_M^3(p) = \left\{ x = (x_{mnk}) : \left(M \left(\frac{((m+n+k)!|x_{mnk}|)^{\frac{1}{m+n+k}}}{\rho} \right) \right)^{p_{mnk}} \to 0,$$

$$(m, n, k \to \infty) \right\}$$

for some $\rho > 0$. Suppose that p_{mnk} is a constant for all m, n, k then $\chi_M^3(p) = \chi_M^3$.

Proposition 3.6. Let $0 \le p_{mnk} \le q_{mnk}$ for all $m, n, k \in \mathbb{N}$ and let $\left\{\frac{q_{mnk}}{p_{mnk}}\right\}$ be bounded. Then $\chi_M^3(q) \subset \chi_M^3(p)$.

Proof. Let

$$(11) x \in \chi_M^3(q),$$

then

(12)
$$\left(M \left(\frac{((m+n+k)! |x_{mnk}|)^{\frac{1}{m+n+k}}}{\rho} \right) \right)^{q_{mnk}} \to 0, \text{ as } m, n, k \to \infty.$$

Let $t_{mnk} = (M(((m+n+k)!|x_{mnk}|)1/m + n + k/\rho))^{q_{mnk}}$, and let $\gamma_{mnk} = p_{mnk}/q_{mnk}$. Since $p_{mnk} \leq q_{mnk}$, we have $0 \leq \gamma_{mnk} \leq 1$. Let $0 < \gamma < \gamma_{mnk}$, then

(13)
$$u_{mnk} = \begin{cases} t_{mnk}, & \text{if } (t_{mnk} \ge 1) \\ 0, & \text{if } (t_{mnk} < 1) \end{cases}$$

$$v_{mnk} = \begin{cases} 0, & \text{if } (t_{mnk} \ge 1) \\ t_{mnk}, & \text{if } (t_{mnk} < 1) \end{cases}$$

$$t_{mnk} = u_{mnk} + v_{mnk}, \quad t_{mnk}^{\gamma_{mnk}} = u_{mnk}^{\gamma_{mnk}} + v_{mnk}^{\gamma_{mnk}}.$$

Now, it follows that

(14)
$$u_{mnk}^{\gamma_{mnk}} \leq u_{mnk} \leq t_{mnk}, \quad v_{mnk}^{\gamma_{mnk}} \leq u_{mnk}^{\gamma}.$$
Since $t_{mnk}^{\gamma_{mnk}} = u_{mnk}^{\gamma_{mnk}} + v_{mnk}^{\gamma_{mnk}}$, we have $t_{mnk}^{\gamma_{mnk}} \leq t_{mnk} + v_{mnk}^{\gamma}$. Thus,
$$\left(M\left(\left((m+n+k\right)! |x_{mnk}|\right)^{1/m+n+k} / \rho\right)^{q_{mnk}}\right)^{\gamma_{mnk}}$$

$$\leq \left(M\left(\left((m+n+k\right)! |x_{mnk}|\right)^{1/m+n+k} / \rho\right)\right)^{q_{mnk}},$$

$$\left(M\left(\left((m+n+k\right)! |x_{mnk}|\right)^{1/m+n+k} / \rho\right)^{q_{mnk}}\right)^{p_{mnk}/q_{mnk}}$$

$$\leq \left(M\left(\left((m+n+k\right)! |x_{mnk}|\right)^{1/m+n+k} / \rho\right)\right)^{q_{mnk}},$$

which yields

$$\left(M\left(\left((m+n+k\right)!\left|x_{mnk}\right|\right)^{1/m+n+k}/\rho\right)\right)^{p_{mnk}}$$

$$\leq \left(M\left(\left((m+n+k)!\left|x_{mnk}\right|\right)^{1/m+n+k}/\rho\right)\right)^{q_{mnk}}.$$

However,

$$\left(M\left(((m+n+k)!|x_{mnk}|)^{1/m+n+k}/\rho\right)\right)^{q_{mnk}} \to 0 \quad \text{(by(12))}.$$

Thus,

$$\left(M\left(\left((m+n+k)!\left|x_{mnk}\right|\right)^{1/m+n+k}/\rho\right)\right)^{p_{mnk}}\to 0 \text{ as } m,n,k\to\infty.$$

Hence,

$$(16) x \in \chi_M^3(p).$$

Hence (11) and (16), we are granted

(17)
$$\chi_M^3(q) \subset \chi_M^3(p).$$

This completes the proof.

Proposition 3.7. (a) Let $0 < \inf p_{mnk} \le p_{mnk} \le 1$, then $\chi_M^3(p) \subset \chi_M^3$. (b) If $1 \le p_{mnk} \le \sup_{mnk} < \infty$, then $\chi_M^3 \subset \chi^3(p)$.

Proof. The above statements are special cases of Proposition 3.6. Therefore, it can be proved by similar arguments. \Box

Proposition 3.8. If $0 < p_{mnk} \le q_{mnk} < \infty$ for each m, n, k then $\chi_M^3(p) \subseteq \chi^3(q)$.

Proof. Let $x \in \chi_M^3(p)$, then

(18)
$$\left(M\left(((m+n+k)!|x_{mnk}|)^{1/m+n+k}\right)\right)^{p_{mnk}} \to 0, \text{ as } m, n, k \to \infty.$$

This implies that $\left(M\left(((m+n+k)!|x_{mnk}|)^{1/m+n+k}/\rho\right)\right) \leq 1$ for sufficiently large m, n, k. Since M is non-decreasing, we get

(19)
$$\left(M \left(((m+n+k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right)^{q_{mnk}}$$

$$\leq \left(M \left(((m+n+k)! |x_{mnk}|)^{1/m+n+k} / \rho \right) \right)^{p_{mnk}},$$

then $\left(M\left(\left((m+n+k)!\left|x_{mnk}\right|\right)^{1/m+n+k}/\rho\right)\right)^{q_{mnk}} \to 0 \text{ as } m, n, k \to \infty \text{ (by using (18))}.$

Let
$$x \in \chi_M^3(q)$$
. Hence, $\chi_M^3(p) \subseteq \chi^3(q)$. This completes the proof.

Competing Interests: The authors declare that there is no conflict of interests regarding the publication of this research paper.

Acknowledgement: The authors thank the referee's for his careful reading of the manuscript and comments that improved the presentation of the paper.

References

- [1] T. Apostol, Mathematical Analysis, Addison-Wesley, London, 1978.
- [2] A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures, 1(2), (2014), 16-25.
- [3] A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2(1), (2014), 6-10.
- [4] A. Esi and E. Savażs, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. and Inf. Sci., 9 (5), (2015), 2529-2534.
- [5] G.H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
- [6] P.K. Kamthan and M. Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
- [7] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100(1986), 161-166.
- [8] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors in bounded, Canad. J. Math., 25(1973), 973-978.
- [9] A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., Vol. 8, No. 2(2007), 49-55.
- [10] N. Subramanian and U.K. Misra, Characterization of gai sequences via double Orlicz space, Southeast Asian Bulletin of Mathematics, (revised).
- [11] N. Subramanian, B.C. Tripathy and C. Murugesan, The double sequence space of Γ^2 , Fasciculi Math., **40** (2008), 91-103.
- [12] N. Subramanian, B.C. Tripathy and C. Murugesan, The Cesáro of double entire sequences, *International Mathematical Forum*, Vol. 4, No. 2(2009), 49-59.
- [13] N. Subramanian and A. Esi, The generalized triple difference of χ^3 sequence spaces, Global Journal of Mathematical Analysis, **3** (2) (2015), 54-60.
- [14] N. Subramanian and A. Esi, The study on χ^3 sequence spaces, Songklanakarin Journal of Science and Technology, under review.
- [15] N. Subramanian and A. Esi, Some New Semi-Normed Triple Sequence Spaces Defined by a Sequence Of Moduli, *Journal of Analysis & Number Theory*, 3 (2) (2015), 79-88.
- [16] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The Triple Almost Lacunary Γ^3 sequence spaces defined by a modulus function, *International Journal of Applied Engineering Research*, Vol. **10**, No. **80** (2015), 94-99.
- [17] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The triple entire sequence defined by Musielak Orlicz functions over p—metric space, Asian Journal of Mathematics and Computer Research, International Press, 5 (4) (2015), 196-203.

- [18] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The Random of Lacunary statistical on Γ^3 over metric spaces defined by Musielak Orlicz functions, *Modern Applied Science*, in press.
- [19] T.V.G. Shri Prakash, M. Chandramouleeswaran and N. Subramanian, The Triple Γ³ of tensor products in Orlicz sequence spaces, *Mathematical Sciences International Research Journal*, Vol. 4, No. 2 (2015), 162-166.

N. Subramanian

DEPARTMENT OF MATHEMATICS SASTRA UNIVERSITY THANJAVUR-613 401 INDIA

 $E ext{-}mail\ address: nsmaths@yahoo.com}$

A. Esi

ADIYAMAN UNIVERSITY ADIYAMAN TURKEY

 $E ext{-}mail\ address:}$ aesi23@hotmail.com